บทที่ 8 เทคโนโลยีอวกาศ


8.1 กล้องโทรทรรศน์


กล้องโทรทรรศน์แบบหักเหแสง

เป็นอุปกรณ์ที่สามารถขยายวัตถุที่อยู่ในระยะไกล กาลิเลโอ เป็นบุคคลแรกที่ประดิษฐกล้องชนิดนี้ขึ้น ประกอบด้วยเลนซ์นูนอย่างน้อยสองชิ้น คือ เลนซ์วัตถุ (Object Lens)เป็นเลนซ์ด้านรับแสงจากวัตถุ ซึ่งจะมีความยาวโฟกัสยาว (Fo) และเลนซ์ตา (Eyepieces) เป็นเลนซ์ที่ติดตาเราเวลามอง ซึ่งมีความยาวโฟกัสสั้น (Fe) กว่าเลนซ์วัตถุมากๆ 
                อัตราการขยายของกล้อง = ความยาวโฟกัสเลนซ์วัตถุ Fo /ความยาวโฟกัสเลนซ์ตา Fe




หลักการของกล้องโทรทัศน์ชนิดหักเหแสง 
                เลนซ์วัตถุจะรับแสงจากวัตถุที่ระยะไกลๆแล้วจะเกิดภาพที่ตำแหน่งโฟกัส(Fo) เสมอ แล้ว เลนซ์ตัวที่สอง หรือ เลนซ์ตา (Fe) จะขยายภาพจากเลนซ์วัตถุอีกครั้ง ซึ่งต้องปรับระยะของเลนซ์ตา เพื่อให้ภาพจากเลนซ์วัตถุที่ตำแหน่ง Fo อยู่ใกล้กับ โฟกัสของเลนซ์ตา Fe และทำให้เกิดภาพชัดที่สุด 

กล้องโทรทรรศน์แบบสะท้อนแสง

เป็นอุปกรณ์ที่สามารถขยายวัตถุที่อยู่ในระยะไกล เซอร์ ไอเซค นิวตัน เป็นผู้ประดิษซ์กล้องชนิดนี้ เป็นบุคคลแรก บางที่เราก็เรียก กล้องแบบนี้ว่า กล้องแบบนิวโทเนียน ประกอบด้วยกระจกเว้า กระจกระนาบ และ เลนซ์นูน 





หลักการของกล้องโทรทัศน์ชนิดสะท้อนแสง 
กล้องจะรับแสงที่เข้ามากระทบกับกระจกเว้าที่อยู่ท้ายกล้องที่เราเรียกว่า Primary Mirror แล้วรวมแสง สะท้อนกับกระจกระนาบหรือ ปริซึม เราเรียกว่า Secondary Mirror ที่อยู่กลางลำกล้อง เข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง 

อัตราขยายของกล้อง = ความยาวโฟกัสของกระจกเว้า / ความโฟกัสของเลนซ์ตา 



กล้องโทรทรรศน์แบบผสม

กล้องดูดาวคุณภาพสูงที่ถูกออกแบบมาให้ใช้หลักของเลนซ์และกระจกร่วมกัน เนื่องจากกระจกของกล้องแบบนี้จะเป็นกระจกที่มีความโค้งแบบ Spherical ซึ่งมีอาการคลาดทางความโค้งอยู่จึงต้องมีชิ้นเลนซ์อีกชิ้นหนึ่งที่ทำหน้าที่แก้ไขเรื่องของการคลาดทางความโค้งนี้ เราเรียกกระจกชิ้นนี้ว่า Corrector Plate
     
เราแบ่งเป็นชนิดย่อยๆ ของกล้องแบบผสมออกเป็น  ชมิดท์-แคสสิเกรนส์ (Schmidt-cassegrain),  มาคซูตอฟ (Maksutov) หลักการโดยรวมแล้วจะเหมือนกันแต่จะแก้ไขส่วนของ Corrector Plate เท่านั้น  จะใช้กระจก 2 ชุด สะท้อนแสงกลับ ไป-มา ช่วยให้ลำกล้องสั้น   เราจะพบว่า กล้องโทรทรรศน์ขนาดใหญ่ที่มี ความยาวโฟกัสมาก ดังเช่น กล้องโทรทรรศน์บนหอดูดาว มักจะเป็นกล้องชนิดนี้



  หลักการของกล้องโทรทัศน์ชนิดผสม
  กล้องจะรับแสงจากวัตถุที่ระยะไกลๆผ่านชิ้นเลนซ์ด้านหน้าที่เราเรียกว่า Corrector Plate หรือแผ่นแก้ไข เพื่อแก้ไขและเบี่ยงเบนแสงบริเวณขอบเลนซ์ให้ดีขึ้น ก่อนจะมากระทบกระจกบานแรกที่ท้ายกล้อง ที่เราเรียกว่า Primary Mirror ซึ่งเป็นกระจกที่มีความโค้งแบบ Spherical และมีรูอยู่กลางกระจก แล้วสะท้อนกลับไปที่ Corrector Plate ซึ่งตรงกลางจะมี Secondary Mirror สะท้อนกลับมาที่ท้ายกล้องเข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง หลักการคล้ายกับกล้องแบบนิวโทเนี่ยน แต่กล้องแบบผสม จะดูภาพจากท้ายกล้อง ไม่ใช่ข้างกล้อง และภาพที่ได้ยังมีการกลับหัวและกลับซ้ายขวา ซึ่งต้องอาศัย diagonal prism ช่วยแก้ไขภาพเหมือนกับกล้องแบบหักเหแสง



โครงสร้างของกล้องแบบชมิคท์-แคสซิแกน


เนื่องจากกล้องโทรรศน์มีขนาดใหญ่มีน้ำหนักมากและให้กำลังขยายสูง  การเคลื่อนไหวกล้องโทรทรรศน์เพียงเบาๆ จะทำให้ภาพสั่นเบลอขาดความคมชัด  กล้องโทรทรรศน์จึงจำเป็นต้องติดตั้งอยู่บนฐานตั้งกล้อง (Telescope mount) ที่มีนำ้หนักมากและมั่นคง  ฐานตั้งกล้องโทรทรรศน์เป็นแบ่งเป็น 2 ประเภท คือ ฐานระบบขอบฟ้า และฐานระบบศูนย์สูตร

        ฐานระบบขอบฟ้า (Alt-azimuth Mount) มีแกนหมุน 2 แกนตามระบบพิกัดขอบฟ้า คือ แกนหมุนในแนวนอนในแนวระดับสำหรับปรับค่ามุมทิศ (Azimuth)  และแกนหมุนในแนวดิ่งสำหรับปรับค่ามุมเงย (Altitude) ฐานตั้งกล้องชนิดนี้เหมาะสำหรับการใช้งานทั่วไปที่ไม่ต้องการกำลังขยายสูง สามารถใช้มือหันกล้องไปยังเป้าหมายที่ต้องการ  แต่เมื่อใช้กำลังขยายสูงจะมีปัญหา เนื่องจากดาวเคลื่อนที่ไปตามทรงกลมฟ้าด้วยอัตรา 0.25 องศาต่อนาที ดาวจะเคลื่อนที่หนีกล้อง ทำให้ต้องปรับกล้องหมุนตามดาวทั้งสองแกนพร้อมๆ กัน ซึ่งเป็นสิ่งที่ทำได้ไม่สะดวก 


 ฐานระบบศูนย์สูตร (Equatorial Mount) มีแกนหมุน 2 แกนตามระบบศูนย์สูตร  การติดตั้งฐานครั้งแรกจะต้องตั้งให้แกนไรท์แอสเซนชัน (RA) ชึ้ไปยังจุดขั้วฟ้าเหนือ ซึ่งเป็นจุดศูนย์กลางทรงกลมฟ้า (ใกล้ดาวเหนือ) ส่วนแกนเดคลิเนชัน (Dec) จะติดตั้งกล้องโทรทรรศน์ส่องไปยังเป้าหมายที่ต้องการ เมื่อใช้งานแกน RA จะหมุนด้วยความเร็วเท่ากับโลกหมุนรอบตัวเองเพื่อติดตามดาวให้อยู่กลางภาพตลอดเวลา  ป้องกันมิให้ดาวเคลื่อนหนีกล้อง  ฐานระบบศูนย์สูตรจึงมีกลไกสลับซับซ้อนกว่าฐานระบบขอบฟ้า ทำให้มีขนาดใหญ่และน้ำหนักมากไม่สะดวกในการเคลื่อนย้าย  ฐานระบบศูนย์สูตรเหมาะกับการใช้งานกำลังขยายสูงและงานถ่ายภาพติดตามดาว  แต่ไม่เหมาะสำหรับส่องดูวิวบนพื้นโลก เนื่องจากไม่สามารถกวาดกล้องในแนวขนานกับพื้นดิน





8.2 การขนส่งและการโคจรของดาวเทียม

 ดาวเทียมถูกส่งขึ้นไปจากโลกโดยยานขนส่งอวกาศ และสามารถโคจรรอบโลกได้อาศัยหลักการโคจรตามแรงดึงดูดระหว่างมวล ซึ่ง ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วเพียงค่าหนึ่งเท่านั้นจึงสามารถจะโคจรรอบโลกอยู่ได้โดยไม่หลุดจากวงโคจร โดยความเร็วดังกล่าวจะอยู่ในช่วง 7.6-11.2 กิโลเมตรต่อวินาที (รูปแบบการโคจรแบบวงกลมจนกระทั่งถึงรูปแบบการโคจรแบบพาราโบลา) ดังรูปที่ 1 ความเร็วดังกล่าวนี้ถูกควบคุมตั้งแต่เริ่มต้นปล่อยดาวเทียมเข้าสู่วงโคจรเพื่อให้เส้นทางการโคจรของดาวเทียมไม่ซ้อนทับกันกับดาวเทียมดวงอื่นๆ ดังนั้นแม้จะมีดาวเทียมอยู่มากมายแต่ดาวเทียมเหล่านี้จะไม่โคจรชนกันเลย เนื่องจากดาวเทียมแต่ละดวงจะมีสมบัติการเคลื่อนที่เฉพาะตัว

ขอบเขตความเร็วเริ่มต้นของดาวเทียม




จรวด (Rocket) เป็นเครื่องยนต์ที่ใช้ขับเคลื่อนพาหนะสำหรับขนส่งอุปกรณ์หรือมนุษย์ขึ้นสู่อวกาศ จรวดสามารถเดินทางไปในอวกาศ เนื่องจากไม่จำเป็นต้องอาศัยออกซิเจนในบรรยากาศมาใช้ในการสันดาปเชื้อเพลิง ทั้งนี้เพราะว่าจรวดมีถังบรรจุออกซิเจนอยู่ในตัวเอง  จรวดที่ใช้เดินทางไปสู่อวกาศจะต้องมีแรงขับเคลื่อนสูงมากและต่อเนื่อง เพื่อเอาชนะแรงโน้มถ่วงของโลก (Gravity) ซึ่งมีความเร่ง 9.8 เมตร/วินาที2  ในการเดินทางจากพื้นโลกสู่วงโคจรรอบโลก จรวดทำงานตามกฎของนิวตัน 3 ข้อดังนี้ 
  • กฎข้อที่ 3 “แรงกริยา = แรงปฏิกิริยา” จรวดปล่อยแก๊สร้อนออกทางท่อท้ายด้านล่าง (แรงกริยา) ทำให้จรวดเคลื่อนที่ขึ้นสู่อากาศ (แรงปฏิกิริยา) 
  • กฏข้อที่ 2 "ความเร่งของจรวดแปรผันตามแรงขับของจรวด แต่แปรผกผันกับมวลของจรวด" (a = F/m) ดังนั้นจรวดต้องเผาไหม้เชื้อเพลิงอย่างต่อเนื่อง เพื่อสร้างความเร่งเอาชนะแรงโน้มถ่วง  และเพื่อให้ได้ความเร่งสูงสุด นักวิทยาศาสตร์จะต้องออกแบบให้จรวดมีมวลน้อยที่สุดแต่มีแรงขับดันมากที่สุด 
  • กฎข้อที่ 1 "กฎของความเฉื่อย" เมื่อจรวดนำดาวเทียมหรือยานอวกาศเข้าสู่วงโคจรรอบโลกแล้ว จะดับเครื่องยนต์เพื่อเคลื่อนที่ด้วยแรงเฉื่อย ให้ได้ความเร็วคงที่ เพื่อรักษาระดับความสูงของวงโคจรให้คงที่ 

เราแบ่งประเภทของจรวดตามชนิดของเชื้อเพลิงออกเป็น 3 ประเภท คือ
  1. จรวดเชื้อเพลิงแข็ง มีโครงสร้างไม่ซับซ้อน แต่เมื่อการเผาไหม้เชื้อเพลิงเกิดขึ้นแล้ว ไม่สามารถหยุดได้ ตัวอย่างของจรวดเชื้อเพลิงแข็งได้แก่ บั้งไฟภาคอีสาน จรวดทำลายรถถัง เป็นต้น
  2. จรวดเชื้อเพลิงเหลว มีโครงสร้างซับซ้อนกว่าจรวดเชื้อเพลิงแข็ง เพราะต้องมีถังเก็บเชื้อเพลิงเหลว และออกซิเจนเหลว (เพื่อช่วยให้เกิดการสันดาป) ซึ่งมีอุณหภูมิต่ำกว่าจุดเยือกแข็ง และยังต้องมีระบบปั๊มและท่อเพื่อลำเลียงเชื้อเพลิงเข้าสู่ห้องเครื่องยนต์เพื่อทำการเผาไหม้ดังภาพที่ 1 ด้วยเหตุนี้จรวดเชื้อเพลิงเหลวจึงมีราคาสูง อย่างไรก็ตามจรวดเชื้อเพลิงเหลวมีข้อดีคือ สามารถควบคุมปริมาณการเผาไหม้ และปรับทิศทางของกระแสแก๊สได้ ทำให้ปลอดภัย ควบคุมทิศทางและความเร็วได้ง่าย


    ภาพที่ จรวดเชื้อเพลิงเหลวและจรวดเชื้อเพลิงแข็ง
  3. จรวดไอออน ไม่ได้ใช้พลังงานจากการสันดาปเชื่้อเพลิงดังเช่นจรวดเชื้อเพลิงแข็งและจรวดเชื้อเพลิงเหลว แต่ใช้พลังงานไฟฟ้ายิงอิเล็กตรอนเข้าใส่อะตอมของแก๊สเฉื่อย เช่น ซีนอน (Xenon) ให้แตกเป็นประจุ แล้วเร่งปฏิกริยาให้ประจุเคลื่อนที่ออกจากท่อท้ายของเครื่องยนต์ด้วยความเร็วสูงเพื่อให้เกิดแรงดัน (แรงกริยา) ผลักจรวดให้เคลื่อนที่ไปด้านหน้า (แรงปฏิกริยา) จรวดไอออนมีขนาดเล็กจึงมีแรงขับเคลื่อนต่ำแต่มีความประหยัดสูง จึงเหมาะสำหรับใช้ในการเดินทางระหว่างดวงดาวเป็นระยะเวลานาน 



8.3 ระบบการขนส่งอวกาศ



ระบบขนส่งอวกาศประกอบด้วยส่วนประกอบใหญ่ ๆ   3   ส่วน คือ
         1.   ยานขนส่งอวกาศ
         2.   ถังเชื้อเพลิงภายนอก
         3.   จรวดเขื้อเพลิง
ขั้นตอนการบินของยานขนส่งอากาศมีดังนี้
         1.   ใช้จรวดขับดันเชื้อเพลิงแข็ง   2   ลำเป็นพลังงานในการส่งยานขนส่งอากาศขึ้นจากฐาน
         2.   เมื่อจรวดขับดันใช้เชื้อเพลิงหมดแ
ล้วจะแยกตัวออกและตกลงสู่พื้นน้ำ และใช้ร่มชูชีพเพื่อนำจรวดขับดันนี้  นำกลับไปยังฐานส่งจรวด เพื่อซ่อมแซมแก้ไขใช้ในโอกาสต่อไป 
        3.   ยานขนส่งอากาศคงเคลื่อนที่สูงขึ้นต่อไป   โดยเชื้อเพลิงที่เป็นของเหลวบรรจุในถังเชื้อเพลิงภายนอกให้กับเครื่องยนต์จรวด 3 เครื่อง
        4.   ถังเชื้อเพลิงภายนอกจะหลุดออกก่อนที่ยานขนส่งอวกาศจะไปถึงวงโคจรรอบโลก และถูกเผาไหม้ในชั้นบรรยากาศ ไม่มีการนำกลับมาใช้งานอีกต่อไป

สภาพไร้น้ำหนัก 
สำหรับคนที่อยู่ในดาวเทียมที่กำลังโคจรรอบโลกอยู่ จะไม่รู้สึกว่ามีน้ำหนักเลย ทั้งนี้ในการเคลื่อนที่สัมพัทธ์กับตัวดาวเทียม ทุกสิ่งทุกอย่างปรากฏเสมือนลอยอยู่ในดาวเทียมได้โดยไม่ตก เช่น เวลาเทน้ำออกจากแก้ว น้ำก็ลอยเป็นก้อนกลมอยู่ (เป็นทรงกลมจากความตึงผิว) ความจริงทุกสิ่งทุกอย่างในดาวเทียมเคลื่อนที่เป็นวิถีโค้งอย่างเดียวกับดาวเทียม สิ่งที่เกิดขึ้นเรียกว่าสภาพไร้น้ำหนัก (weightlessness) 

8.4 การใช้ประโยชน์จากเทคโนโลยีอวกาศ

1.ดาวเทียมอุตุนิยมวิทยา
ดาวเทียมอุตุนิยมวิทยาเป็นเครื่องมือที่มีความสำคัญสำหรับกิจการอุตุนิยมวิทยา สามารถใช้สังเกตพื้นที่บนพื้นผิวโลกได้หลายบริเวณ รวมทั้งได้รับรู้ข้อมูลอย่างต่อเนื่องจากทั่วทั้งโลก ดังนั้น ภาพถ่ายที่ได้จากดาวเทียมอุตุนิยมวิทยา เป็นข้อมูลที่สำคัญอย่างหนึ่งสำหรับนักพยากรณ์อากาศ ทำให้สามารถติดตามและ วิเคราะห์ลักษณะอากาศที่เกิดขึ้นในขณะนั้น ๆ โดยเฉพาะในพื้นที่ที่เครื่องมืออื่น ๆ มีข้อจำกัด หรือในมหาสมุทร เช่น ลักษณะของพายุหมุนเขตร้อน เป็นต้น ดังนั้นภาพจากดาวเทียมจึงเป็นเครื่องมือสำหรับติดตามลักษณะอากาศร้ายเพื่อการเตือนภัยได้ดีที่สุดอย่างหนึ่ง นักอุตุนิยมวิทยาสามารถรับรู้ข้อมูลสภาพอากาศในช่วง 50 กิโลเมตร หรือมากกว่าทั่วทั้งโลกได้จากภาพจากดาวเทียม สามารถมองเห็นสภาพอากาศในมุมมองที่สูง และลำดับการเคลื่อนตัวของพายุบนจอคอมพิวเตอร์ได้ ดาวเทียมอุตุนิยมวิทยาดวงแรกเป็นของประเทศสหรัฐอเมริกา ชื่อ TIROS 1 (Television and Infrared Observation Satellite) ขึ้นสู่อวกาศ เมื่อวันที่ 1 เมษายน พ.ศ 2503 







2.ดาวเทียมสำรวจทรัพยากร
การใช้ดาวเทียมสำรวจทรัพยากรและสภาพแวดล้อมของโลก เป็นการผสมผสานระหว่างเทคโนโลยีการถ่ายภาพ และโทรคมนาคม โดยการทำงานของดาวเทียมสำรวจทรัพยากรจะใช้หลักการ สำรวจข้อมูลจากระยะไกล
หลักการที่สำคัญของดาวเทียมสำรวจทรัพยากร คือ Remote Sensing โดยใช้คลื่นแสงที่เป็นพลังงานแม่เหล็กไฟฟ้า (EME : Electro - Magnetic Energy) ทำหน้าที่เสมือนสื่อกลางส่งผ่านระหว่างวัตถุเป้าหมาย และอุปกรณ์บันทึกข้อมูล อุปกรณ์ถ่ายถาพที่ติดตั้งอยู่บนดาวเทียม มักจะได้รับการออกแบบให้มีความสามารถถ่ายภาพ และมีความหลากหลายในรายละเอียดของภาพได้อย่างเหมาะสม เพื่อประโยชน์ในการจำแนกประเภททรัพยากรที่สำคัญๆ
ดาวเทียมสื่อสารเป็นดาวเทียมที่ต้องทำงานอยู่ตลอดเวลา เรียกได้ว่าทำงานตลอด 24 ชม. ไม่มีวันหยุด เพื่อที่จะเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าไว้ด้วยกัน นับตั้งแต่ NASA ส่งดาวเทียมสื่อสารเข้าสู่วงโคจรไป จนปัจจุบันมีบริษัทเอกชนจำนวนมากที่เข้ามาบุกเบิกธุรกิจ และทำกำไรมหาศาล จากประโยชน์ต่างๆ ที่ได้จากดาวเทียม
ตัวอย่างดาวเทียมสื่อสาร
        ดาวเทียม Thaicom 3 เป็นดาวเทียมสื่อสารอีกดวงหนึ่งของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2540 เพื่อให้บริการทางด้านการสื่อสาร มีรัศมีการให้บริการครอบคลุมทั่วทั้ง 4 ทวีป



ดาวเทียมสำรวจทรัพยากร


 3. ดาวเทียมสังเกตการณ์ดาราศาสตร์

ดาวเทียมสังเกตการณ์ดาราศาสตร์   เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษาวัตถุบนท้องฟ้า  ดาวเทียมแบบนี้มีทั้งประเภทโคจรรอบโลก และประเภทโคจรผ่านไปใกล้ดาวเคราะห์ หรือลงสำรวจดาวเคราะห์ ซึ่งเรียกอีกชื่อหนึ่งว่ายานอวกาศ  เช่น ยานอวกาศวอยเอเจอร์


ยานอวกาศวอยเอเจอร็

 4.ดาวเทียมสื่อสาร
       ดาวเทียมสื่อสารเมื่อถูกส่งเข้าสู่วงโคจร มันก็พร้อมที่จะทำงานได้ทันที มันจุส่งสัญญาณไปยังสถานีภาคพื้นดิน สถานีภาคพื้นดินจะรับสัญญาณโดยใช้อุปกรณ์ ที่เรียกว่า "Transponder" ซึ่งเป็นอุปกรณ์ที่ทำหน้าที่พักสัญญาณ แล้วกระจายสัญญาณไปยังจุดรับสัญญาณต่างๆ บนพื้นโลก ดาวเทียมสื่สารสามารถส่งผ่านสัญญาณโทรศัพท์ ข้อมูลต่างๆ รวมถึงสัญญาณภาพโทรทัศน์ได้ไปยังทุกหนทุกแห่ง
ประโยชน์ที่ได้รับ
        ด้านการติดต่อสื่อสารโทรคมนาคมทางด้านต่างๆ เช่น ทางด้านสัญญาณโทรทัศน์ สัญญาณโทรศัพท์ ข้อมูลคอมพิวเตอร์
        ดาวเทียม Thaicom 1 และ 2 เป็นดาวเทียมสื่อสารชุดแรกของประเทศไทย ถูกส่งขึ้นไปโคจรในปี พ.ศ. 2536 และ 2537 ตามลำดับ เพื่อให้บริการทางด้านการสื่อสารมีรัศมีการให้ บริการครอบคลุมทั่วทั้งประเทศไทย และภูมิภาคใกล้เคียง





5.กล้องโทรทัศน์อวกาศฮับเบิล

กล้องโทรทรรศน์อวกาศฮับเบิล (อังกฤษ: Hubble Space Telescope) คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจรเมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์อวกาศฮับเบิลไม่ได้เป็นกล้องโทรทรรศน์อวกาศตัวแรกของโลก แต่มันเป็นหนึ่งในเครื่องมือวิทยาศาสตร์ที่สำคัญที่สุดในประวัติศาสตร์การศึกษาดาราศาสตร์ที่ทำให้นักดาราศาสตร์ค้นพบปรากฏการณ์สำคัญต่าง ๆ อย่างมากมาย กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การอวกาศยุโรป โดยเป็นหนึ่งในโครงการหอดูดาวเอกขององค์การนาซาที่ประกอบด้วย กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมป์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์[3]

การที่กล้องโทรทรรศน์อวกาศฮับเบิลลอยอยู่นอกชั้นบรรยากาศของโลกทำให้มันมีข้อได้เปรียบเหนือกว่ากล้องโทรทรรศน์ที่อยู่บนพื้นโลก นั่นคือภาพไม่ถูกรบกวนจากชั้นบรรยากาศ ไม่มีแสงพื้นหลังท้องฟ้า และสามารถสังเกตการณ์คลื่นอัลตราไวโอเลตได้โดยไม่ถูกรบกวนจากชั้นโอโซนบนโลก ตัวอย่างเช่น ภาพอวกาศห้วงลึกมากของฮับเบิลที่ถ่ายจากกล้องโทรทรรศน์อวกาศฮับเบิล คือภาพถ่ายวัตถุในช่วงคลื่นที่ตามองเห็นที่อยู่ไกลที่สุดเท่าที่เคยมีมา

โครงการก่อสร้างกล้องโทรทรรศน์อวกาศเริ่มต้นมาตั้งแต่ปี ค.ศ. 1923 กล้องฮับเบิลได้รับอนุมัติทุนสร้างในช่วงปี ค.ศ. 1970 แต่เริ่มสร้างได้ในปี ค.ศ. 1983 การสร้างกล้องฮับเบิลเป็นไปอย่างล่าช้าเนื่องด้วยปัญหาด้านงบประมาณ ปัญหาด้านเทคนิค และจากอุบัติเหตุกระสวยอวกาศแชลเลนเจอร์ กล้องได้ขึ้นสู่อวกาศในปี ค.ศ. 1990 แต่หลังจากที่มีการส่งกล้องฮับเบิลขึ้นสู่อวกาศไม่นานก็พบว่ากระจกหลักมีความคลาดทรงกลมอันเกิดจากปัญหาการควบคุมคุณภาพในการผลิต ทำให้ภาพถ่ายที่ได้สูญเสียคุณภาพไปอย่างมาก ภายหลังจากการซ่อมแซมในปี ค.ศ. 1993 กล้องก็กลับมามีคุณภาพเหมือนดังที่ตั้งใจไว้ และกลายเป็นเครื่องมือในการวิจัยที่สำคัญและเป็นเสมือนฝ่ายประชาสัมพันธ์ของวงการดาราศาสตร์

กล้องฮับเบิลเป็นกล้องโทรทรรศน์อวกาศตัวเดียวที่ถูกออกแบบมาให้นักบินอวกาศสามารถเข้าไปซ่อมแซมในอวกาศได้ จนถึงวันนี้มีภารกิจซ่อมบำรุงทั้งหมดสี่ภารกิจและกำลังจะมีภารกิจที่ห้าในปี ค.ศ. 2009 เป็นภารกิจสุดท้าย ภารกิจที่ 1 คือการซ่อมแซมปัญหาด้านภาพในปี ค.ศ. 1993 ภารกิจที่ 2 คือการติดตั้งเครื่องมือสองชิ้นใหม่ในปี ค.ศ. 1997 ภารกิจที่ 3 แบ่งเป็นสองภารกิจย่อยได้แก่ ภารกิจ 3A เป็นการซ่อมแซมเร่งด่วนในปี ค.ศ. 1999 และภารกิจ 3B เป็นการติดตั้งกล้องสำรวจขั้นสูงในเดือนมีนาคม ค.ศ. 2002 อย่างไรก็ตาม หลังจากเกิดโศกนาฏกรรมกระสวยอวกาศโคลัมเบียในปี ค.ศ. 2003 ภารกิจซ่อมบำรุงที่ห้าซึ่งมีกำหนดการในปี ค.ศ. 2004 ก็ถูกยกเลิกไปเพราะเรื่องความปลอดภัย นาซาเห็นว่าภารกิจที่ต้องใช้คนนั้นอันตรายเกินไป แต่ก็ได้ทบทวนเรื่องนี้อีกครั้ง และในวันที่ 31 ตุลาคม ค.ศ. 2006 ไมค์ กริฟฟิน ผู้บริหารของนาซาจึงเปิดไฟเขียวให้กับภารกิจซ่อมบำรุงฮับเบิลครั้งสุดท้ายโดยจะใช้กระสวยอวกาศแอตแลนติสขนส่งลูกเรือ ภารกิจนี้มีกำหนดการในเดือนตุลาคม ค.ศ. 2008 [4][5] ทว่าในเดือนกันยายน ค.ศ. 2008 มีการตรวจพบข้อผิดพลาดบางประการกับตัวกล้อง[6] ทำให้ต้องเลื่อนกำหนดการซ่อมบำรุงออกไปเป็นเดือนพฤษภาคม ค.ศ. 2009[7] เพื่อเตรียมการซ่อมแซมเพิ่มเติม กระสวยอวกาศแอตแลนติสนำยานซ่อมบำรุงขึ้นปฏิบัติการครั้งสุดท้ายเมื่อ 11 พฤษภาคม ค.ศ. 2009 เพื่อทำการซ่อมแซมและติตตั้งอุปกรณ์ใหม่เพิ่มเติม ซึ่งถ้าทุกอย่างเป็นไปตามแผน กล้องฮับเบิลจะกลับมาใช้งานได้ตามปกติอีกครั้งในเดือนกันยายน ค.ศ. 2009

การซ่อมครั้งนี้จะทำให้กล้องฮับเบิลสามารถใช้งานได้อย่างน้อยจนถึงปี 2014 ซึ่งเป็นปีที่จะมีการส่งกล้องโทรทรรศน์อวกาศเจมส์ เวบบ์เพื่อใช้งานแทนต่อไป กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ มีความสามารถสูงกว่ากล้องฮับเบิลมาก แต่มันจะใช้สำรวจคลื่นช่วงอินฟราเรดเท่านั้น และไม่สามารถทดแทนความสามารถในการสังเกตสเปกตรัมในช่วงที่ตามองเห็นและช่วงอัลตราไวโอเลตของฮับเบิลได้





กล้องโทรทัศน์อวกาศฮับเบิล




ไม่มีความคิดเห็น:

แสดงความคิดเห็น